More titles to consider

Shopping Cart

You're getting the VIP treatment!

With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.

Item(s) unavailable for purchase
Please review your cart. You can remove the unavailable item(s) now or we'll automatically remove it at Checkout.
itemsitem
See your RECOMMENDATIONS

Synopsis

This thesis presents systematic experimental research on chiral-lattice crystals referred to as B20-type germanium compounds, especially focusing on skyrmion spin textures and Dirac electrons. An emergent electromagnetic field observed in MnGe demonstrates a formation of three-dimensional skyrmion crystals. Detection of skyrmions in nanoscale Hall bar devices made of FeGe is realized by measuring the topological Hall effect, a transport property reflecting emergent fields produced by skyrmions. By measuring the electron-filling dependence of thermopower in CoGe, a pronounced thermoelectric property in this compound is revealed to stem from the asymmetric density of states appearing at certain levels of Fermi energy in the Dirac electron state.

The three main results named above will contribute to enriching a variety of novel electromagnetic responses of emergent gauge fields in solids, to realizing high-performance skyrmion-based magnetic memory, and to designing high-efficiency thermoelectric materials, respectively.

Ratings and Reviews

Overall rating

No ratings yet
(0)
5 Stars 4 Stars 3 Stars 2 Stars 1 Stars
0 0 0 0 0

Be the first to rate and review this book!

You've already shared your review for this item. Thanks!

We are currently reviewing your submission. Thanks!

Complete your review

(0)

You can read this item using any of the following Kobo apps and devices:

  • DESKTOP
  • eREADERS
  • TABLETS
  • IOS
  • ANDROID
  • BLACKBERRY
  • WINDOWS